BitTorrent Трекер RusTrek.ru http://5.45.70.241/ |
|
Evans E. H. (ed.) / Эванс Е. Х. (ред.) - An Introduction to Analytical Atomic Spectrometry / Введение в атомную спектроскопию [1998, PDF, ENG] http://5.45.70.241/viewtopic.php?f=267&t=34132 |
Страница 1 из 1 |
Автор: | kotiar [ 2012-02-05 12:10 ] |
Заголовок сообщения: | Evans E. H. (ed.) / Эванс Е. Х. (ред.) - An Introduction to Analytical Atomic Spectrometry / Введение в атомную спектроскопию [1998, PDF, ENG] |
An Introduction to Analytical Atomic Spectrometry / Введение в атомную спектроскопию #777 Год выпуска: 1998 Автор: Evans E. H. (ed.) / Эванс Е. Х. (ред.) Жанр: Органическая химия Издательство: John Wiley & Sons ISBN: 0-471-97417-X Язык: Английский Формат: PDF Качество: eBook (изначально компьютерное) Количество страниц: 225 Описание: В учебном пособии даются основы квантово-механической теории строения атомов и ионов и их спектров. This book is based on An Introduction to Atomic Absorption Spectroscopy by L. Ebdon, which was published in 1982. Since then there have been a number of significant developments in the field of Atomic Spectrometry: inductively coupled plasma atomic emission spectrometry (ICP-AES) has become an established technique, and is used in most analytical laboratories; the spectacular rise to prominence of inductively coupled plasma mass spectrometry has occurred, with a concomitant increase in the speed and quantity of data production, and the sensitivity of analyses. To reflect these changes we have chosen the more generally applicable title An Introduction to Analytical Atomic Spectrometry for this book. While much of the original text from An Introduction to Atomic Absorption Spectroscopy has been retained, the chapter on Plasma Atomic Emission Spectrometry has been expanded to reflect the importance of ICP-AES, and a chapter on Inductively Coupled Plasma Mass Spectrometry has been included. A thorough treatment of Flame Atomic Absorption Spectrometry (FAAS) has been retained because a thorough understanding of this technique will form the basis of understanding in the whole field of analytical atomic spectrometry. Just as importantly, FAAS is available in most teaching laboratories, whereas ICP-AES and ICP-MS are not. The rationale of this book remains the same as that of its forerunner. The book is intended to complement undergraduate and postgraduate courses in analytical chemistry, and to aid in the continuing professional development of analytical chemists in the workplace. The problems of release from work to engage in training are even more acute now than they were in 1982, despite the even greater necessity for lifelong learning and continuous upgrading of skills. Even in full-time education the situation has changed. The number of students studying for first and second degrees has increased, and mature students are returning to education in greater numbers than ever before, hence distance and self-learning have become an even more vital component in any course of study. Keywords are highlighted throughout the text, and there are self-assessment questions at intervals throughout. Chapter 1 is a brief overview of theory and instrumentation. A short treatment of good laboratory practice and sample preparation is included. No amount of words can do justice to these issues, so the discussion is limited to the main points, with the onus being on the tutor to impress up the student the importance of quality assurance in the practical environment of the laboratory itself! Flame and electrothermal atomic absorption spectrometry are dealt with in Chapters 2 and 3, respectively, revised to take account of recent developments. Plasma emission spectrometry is dealt with in Chapter 4, with centre stage going to the inductively coupled plasma. Inductively coupled plasma mass spectrometry is the subject of Chapter 5. Two short Chapters, 6 and 7, then deal with atomic fluorescence spectrometry and special sample introduction methods. In each of the chapters there are sections on theory, instrumentation, interferences and applications. Several appendices con revision questions, practical and laboratory exercises and a bibliography. The book can be used as a self-learning text but it is primarily meant to complement a lecture or distance learning course, and is indeed used in this capacity at Plymouth for undergraduate and postgraduate lectures, and for short courses. Basic theory is included because this is vital to the understanding of the subject; however, excessive theoretical discourse has been avoided, and the emphasis is firmly on the practical aspects of analytical atomic spectrometry. Preface ix Acknowledgements xi 1 1 Overview of Analytical Atomic Spectrometry 1.1 Historical 1 1.1.1 Optical spectroscopy 1 1.1.2 Mass spectrometry 3 1.2 Basic Instrumentation 4 1.2.1 Optical spectroscopy 4 1.2.2 Mass spectrometry 4 1.3 Basic Theory 6 1.3.1 Atomic absorption 6 1.3.2 Atomic emission 6 1.3.3 Atomic fluorescence 7 1.3.4 Atomic mass spectrometry 7 1.4 Practice 8 1.4.1 Calibration and analysis 8 1.4.2 Sensitivity and limit of detection 10 1.5 Interferences and Errors 11 1.5.1 Interferences 11 1.5.2 Operator errors 13 1.6 Applications 14 1.6.1 Clinical, food and organic samples 14 1.6.2 Petrochemicals 14 1.6.3 Agricultural samples 15 1.6.4 Waters and effluents 15 1.6.5 Geochemical and mineralogical samples 15 1.6.6 Metals 15 2 17 Flame Atomic Absorption Spectrometry 2.1 Theory 17 2.2 Instrumentation 20 2.2.1 Sources 20 2.2.2 Flames 23 2.2.3 Sample introduction and sample atomization 29 2.2.4 Burner design 33 2.2.5 Spectrometers 34 2.3 Sensitivity and Limit of Detection 43 2.4 Interferences and Errors 43 2.4.1 Spectral interferences 46 2.4.2 Ionization interferences 46 2.4.3 Chemical interferences 47 2.4.4 Applications 50 3 51 Electrothermal Atomization 3.1 Historical Development 51 3.2 Heated Graphite Atomizers 54 3.3 Other Atomizers 57 3.4 Atomization Mechanisms 58 3.4.1 Thermodynamic considerations 58 3.4.2 Kinetic considerations 59 3.5 Interferences 60 3.5.1 Physical interferences 61 3.5.2 Background absorption 61 3.5.3 Memory effects 61 3.5.4 Chemical interferences 61 3.6 Methods of Overcoming Interferences 63 3.6.1 Control of furnace temperature 63 3.6.2 The effect of the orientation of tube heating 63 3.6.3 Isothermal operation 64 3.6.4 Matrix modification 65 3.6.5 The STPF concept 66 3.7 Other Electrothermal Techniques 66 3.7.1 Furnace atomic non-thermal excitation spectrometry 67 (FANES) 3.7.2 Furnace atomization plasma emission spectrometry 67 (FAPES) 3.8 Applications 68 3.9 The Relative Merits of Electrothermal Atomization 69 3.9.1 Advantages of electrothermal atomization 69 3.9.2 Disadvantages of electrothermal atomization 70 4 73 Plasma Atomic Emission Spectrometry 4.1 Theory 73 4.1.1 Atomic transitions 73 4.1.2 Broadening 75 4.2 Excitation Sources 78 4.2.1 Flame sources 78 4.2.2 Plasma sources 78 4.2.3 Flames vs plasmas 79 4.3 Flame Atomic Emission Spectrometry 82 4.4 Inductively Coupled Plasma Atomic Emission Spectrometry 83 4.4.1 Plasma generation 83 4.4.2 Radiofrequency generators 86 4.4.3 Sample introduction 87 4.4.4 Excitation 92 4.4.5 Monochromators 93 4.4.6 Detectors 99 4.4.7 Data handling 103 4.4.8 Performance characteristics 103 4.4.9 Applications 107 4.5 Other Flame-like Plasma Sources 108 4.5.1 Microwave plasmas 108 4.5.2 Direct current plasmas 110 4.6 Solid Sampling Plasma Sources 111 4.6.1 Arcs and sparks 111 4.6.2 Glow discharges 112 5 115 Inductively Coupled Plasma Mass Spectrometry 5.1 Sample Introduction 115 5.2 Ionization 116 5.3 Ion Sampling 118 5.4 Mass Analysis 120 5.4.1 Quadrupole mass analysis 120 5.4.2 Magnetic sector mass analysis 123 5.4.3 Resolution 124 5.5 Ion Detection and Signal Handling 125 5.6 Performance 128 5.7 Applications 130 5.7.1 Isotope ratio analysis 131 5.7.2 Isotope dilution analysis 134 6 137 Atomic Fluorescence Spectrometry 6.1 Theory 137 6.2 Instrument Design 139 6.3 Sources 140 6.4 Atomization 141 6.4.1 Flames 141 6.4.2 Electrothermal atomizer 142 7 145 Special Sample Introduction Techniques 7.1 Pulse Nebulization 145 7.2 Other Discrete Sampling Devices 146 7.3 Slotted Tube Atomizer 146 7.4 Flow Injection 146 7.5 Vapour Generation 147 7.5.1 Hydride generation 147 7.5.2 Cold vapour generation 151 7.5.3 Other vapour techniques 152 7.6 Chromatography 153 7.7 Solid Sampling Techniques 154 7.8 Nebulizers 155 Appendices 157 A Revision Questions 157 B Practical Exercises 161 B.1 Calculations 161 B.2 Laboratory Exercises 163 B.3 Operation and Optimization of an Atomic Absorption 163 Spectrometer and Determination of Magnesium in Synthetic Human Urine B.4 Determination of Sodium in Soil Extracts by Atomic Emission 167 Spectrometry B.5 Graphite Furnace Atomic Absorption Spectrometry 171 B.6 Speciation of Arsenic Compounds by Ion-exchange High- 173 performance Liquid Chromatography with Hydride Generation Atomic Fluorescence Detection B.7 Introduction to Isotope Dilution Inductively Coupled Plasma 176 Mass Spectrometry C Bibliography 183 ndex 187 Опубликовано группой
|
Страница 1 из 1 | Часовой пояс: UTC + 3 часа |
Powered by phpBB® Forum Software © phpBB Group https://www.phpbb.com/ |